English
cURL
curl --request POST \ --url https://llm.ai-nebula.com/v1/video/generations \ --header 'Authorization: <authorization>' \ --header 'Content-Type: application/json' \ --data ' { "model": "<string>", "prompt": "<string>", "image": "<string>", "duration": 123, "resolution": "<string>", "aspect_ratio": "<string>" } '
{ "id": "video_task_abc123", "object": "video.generation", "status": "pending", "model": "sora-2", "created": 1234567890, "prompt": "A cat running on grass, sunny day, cinematic quality", "duration": 5, "resolution": "1080p", "aspect_ratio": "16:9" }
Bearer sk-xxxxxxxxxx
sora-2
veo-2
720p
1080p
4k
16:9
9:16
1:1
curl https://llm.ai-nebula.com/v1/video/generations \ -H "Content-Type: application/json" \ -H "Authorization: Bearer sk-XyLy**************************mIqSt" \ -d '{ "model": "sora-2", "prompt": "A cat running on grass, sunny day, cinematic quality", "duration": 5, "resolution": "1080p", "aspect_ratio": "16:9" }'
import requests url = "https://llm.ai-nebula.com/v1/video/generations" headers = { "Authorization": "Bearer sk-XyLy**************************mIqSt", "Content-Type": "application/json" } data = { "model": "sora-2", "prompt": "A cat running on grass, sunny day, cinematic quality", "duration": 5, "resolution": "1080p", "aspect_ratio": "16:9" } response = requests.post(url, headers=headers, json=data) task = response.json() print(f"Task ID: {task['id']}")
import base64 with open("reference.jpg", "rb") as f: image_base64 = base64.b64encode(f.read()).decode() data = { "model": "sora-2", "prompt": "Make the person in the image smile and wave", "image": f"data:image/jpeg;base64,{image_base64}", "duration": 5 } response = requests.post(url, headers=headers, json=data)
pending
processing
completed
failed
requests
pip install requests