跳转到主要内容
POST
https://llm.ai-nebula.com
/
v1
/
embeddings
文本向量化(Embedding)
curl --request POST \
  --url https://llm.ai-nebula.com/v1/embeddings \
  --header 'Authorization: <authorization>' \
  --header 'Content-Type: application/json' \
  --data '
{
  "model": "<string>",
  "input": {},
  "encoding_format": "<string>",
  "dimensions": 123
}
'
{
  "object": "list",
  "data": [
    {
      "object": "embedding",
      "index": 0,
      "embedding": [0.0023064255, -0.009327292, 0.015797347, ...]
    }
  ],
  "model": "text-embedding-3-small",
  "usage": {
    "prompt_tokens": 5,
    "total_tokens": 5
  }
}

简介

将文本转换为向量嵌入,适用于语义搜索、文本相似度计算、聚类分析等场景。

认证

Authorization
string
required
Bearer Token,如 Bearer sk-xxxxxxxxxx

请求参数

model
string
required
模型名称,如 text-embedding-3-smalltext-embedding-3-large
input
string | array
required
要嵌入的文本,可以是字符串或字符串数组
encoding_format
string
default:"float"
返回格式:floatbase64
dimensions
integer
输出向量维度(仅部分模型支持)

cURL 示例

curl https://llm.ai-nebula.com/v1/embeddings \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-XyLy**************************mIqSt" \
  -d '{
    "model": "text-embedding-3-small",
    "input": "你好,世界"
  }'

Python 示例

from openai import OpenAI

client = OpenAI(
    api_key="sk-XyLy**************************mIqSt",
    base_url="https://llm.ai-nebula.com/v1"
)

response = client.embeddings.create(
    model="text-embedding-3-small",
    input="你好,世界"
)

print(response.data[0].embedding)
print(f"向量维度:{len(response.data[0].embedding)}")
{
  "object": "list",
  "data": [
    {
      "object": "embedding",
      "index": 0,
      "embedding": [0.0023064255, -0.009327292, 0.015797347, ...]
    }
  ],
  "model": "text-embedding-3-small",
  "usage": {
    "prompt_tokens": 5,
    "total_tokens": 5
  }
}

支持的模型

模型维度说明
text-embedding-3-small1536高性价比,适合大多数场景
text-embedding-3-large3072高精度,适合对精度要求高的场景
text-embedding-ada-0021536旧版模型

注意事项

  • 批量嵌入时,input 可传入字符串数组
  • 部分模型支持通过 dimensions 参数自定义输出维度
  • 依赖 openai 库:pip install openai